Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Toxins (Basel) ; 14(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36548733

RESUMO

The African viperid snake genera Atheris, Cerastes, and Proatheris are closely related, similar in size, but occupy extremely divergent ecological niches (arboreal in tropical rainforests, fossorial in deserts, and swamp-dwelling, respectively). Their venoms have not previously been subjected to comparative analyses for their action upon the coagulation of blood, most notably with significant data deficiencies from Atheris and Proatheris. In contrast, the closely related genus Echis is well-documented as capable of producing potent procoagulant effects. In light of this, we set out to compare the coagulotoxic actions of Atheris ceratophora, A. chlorechis, A. desaixi, A. nitschei, A. squamigera, C. cerastes, C. cerastes gasperettii, C. vipera, and Proatheris superciliaris and explore potential pharmacological interventions to reestablish normal blood coagulation. All venoms displayed extremely potent procoagulant effects, over twice as fast as the most potent Echis reported to date. Although Cerastes is used in the immunising mixture of two different regionally available antivenoms (Inoserp-MENA with C. cerastes, C. cerastes gasperettii, C. vipera and Saudi Arabian polyvalent with C. cerastes), none of the other species in this study are included in the immunising mixture of any antivenom. Notably, all the Cerastes species were only neutralised by the Inoserp-MENA antivenom. C. cerastes venom was not neutralised well by the Saudi Arabian antivenom, with the low levels of recognition for any of the Cerastes venoms suggesting a strong regional variation in the venom of this species, as the C. cerastes venom tested was of African (Tunisian) origin versus Saudi locality used in that antivenom's production. The other antivenoms (Micropharm EchiTAbG, ICP EchiTAb-Plus-ICP, Inosan Inoserp Pan-Africa, Premium Serums PANAF Sub-Sahara Africa, South African Vaccine Producers Echis, South African Vaccine Producers Polyvalent) all displayed trivial-to-no ability to neutralise the procoagulant toxicity of any of the Atheris, Cerastes, or Proatheris venoms. Comparative testing of the enzyme inhibitors DMPS, marimastat, and prinomastat, revealed a very potent neutralising capacity of marimastat, with prinomastat showing lower but still significant potency at the same molar concentration, while a 5× molar concentration of DMPS had no apparent effect on procoagulant venom effects normalized by the other inhibitors. These results and methods contribute to the body of knowledge of potential clinical effects and data necessary for evidence-based advancement of clinical management strategies.


Assuntos
Mordeduras de Serpentes , Viperidae , Animais , Humanos , Antivenenos/farmacologia , Arábia Saudita , Venenos de Víboras/toxicidade , África Subsaariana , Inibidores Enzimáticos , População Africana , Mordeduras de Serpentes/tratamento farmacológico
3.
Front Immunol ; 12: 688802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177943

RESUMO

Palearctic vipers are medically significant snakes in the genera Daboia, Macrovipera, Montivipera, and Vipera which occur throughout Europe, Central Asia, Near and Middle East. While the ancestral condition is that of a small-bodied, lowland species, extensive diversification has occurred in body size, and niche specialization. Using 27 venom samples and a panel of in vitro coagulation assays, we evaluated the relative coagulotoxic potency of Palearctic viper venoms and compared their neutralization by three antivenoms (Insoserp Europe, VIPERFAV and ViperaTAb) and two metalloprotease inhibitors (prinomastat and DMPS). We show that variation in morphology parallels variation in the Factor X activating procoagulant toxicity, with the three convergent evolutions of larger body sizes (Daboia genus, Macrovipera genus, and Vipera ammodytes uniquely within the Vipera genus) were each accompanied by a significant increase in procoagulant potency. In contrast, the two convergent evolutions of high altitude specialization (the Montivipera genus and Vipera latastei uniquely within the Vipera genus) were each accompanied by a shift away from procoagulant action, with the Montivipera species being particularly potently anticoagulant. Inoserp Europe and VIPERFAV antivenoms were both effective against a broad range of Vipera species, with Inoserp able to neutralize additional species relative to VIPERFAV, reflective of its more complex antivenom immunization mixture. In contrast, ViperaTAb was extremely potent in neutralizing V. berus but, reflective of this being a monovalent antivenom, it was not effective against other Vipera species. The enzyme inhibitor prinomastat efficiently neutralized the metalloprotease-driven Factor X activation of the procoagulant venoms. In contrast, DMPS (2,3-dimercapto-1-propanesulfonic acid), which as been suggested as another potential treatment option in the absence of antivenom, DMPS failed against all venoms tested. Overall, our results highlight the evolutionary variations within Palearctic vipers and help to inform clinical management of viper envenomation.


Assuntos
Antivenenos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Fragmentos Fab das Imunoglobulinas/farmacologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Compostos Orgânicos/farmacologia , Mordeduras de Serpentes/tratamento farmacológico , Unitiol/farmacologia , Venenos de Víboras/antagonistas & inibidores , Viperidae , Animais , Testes de Coagulação Sanguínea , Evolução Molecular , Humanos , Mordeduras de Serpentes/sangue , Mordeduras de Serpentes/enzimologia , Especificidade da Espécie , Fatores de Tempo , Venenos de Víboras/enzimologia
4.
Toxins (Basel) ; 13(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499001

RESUMO

The toxin composition of snake venoms and, thus, their functional activity, can vary between and within species. Intraspecific venom variation across a species' geographic range is a major concern for antivenom treatment of envenomations, particularly for countries like French Guiana that lack a locally produced antivenom. Bothrops asper and Bothrops atrox are the most medically significant species of snakes in Latin America, both producing a variety of clinical manifestations, including systemic bleeding. These pathophysiological actions are due to the activation by the venom of the blood clotting factors Factor X and prothrombin, thereby causing severe consumptive coagulopathy. Both species are extremely wide-ranging, and previous studies have shown their venoms to exhibit regional venom variation. In this study, we investigate the differential coagulotoxic effects on human plasma of six venoms (four B. asper and two B. atrox samples) from different geographic locations, spanning from Mexico to Peru. We assessed how the venom variation of these venom samples affects neutralisation by five regionally available antivenoms: Antivipmyn, Antivipmyn-Tri, PoliVal-ICP, Bothrofav, and Soro Antibotrópico (SAB). The results revealed both inter- and intraspecific variations in the clotting activity of the venoms. These variations in turn resulted in significant variation in antivenom efficacy against the coagulotoxic effects of these venoms. Due to variations in the venoms used in the antivenom production process, antivenoms differed in their species-specific or geographical neutralisation capacity. Some antivenoms (PoliVal-ICP, Bothrofav, and SAB) showed species-specific patterns of neutralisation, while another antivenom (Antivipmyn) showed geographic-specific patterns of neutralisation. This study adds to current knowledge of Bothrops venoms and also illustrates the importance of considering evolutionary biology when developing antivenoms. Therefore, these results have tangible, real-world implications by aiding evidence-based design of antivenoms for treatment of the envenomed patient. We stress that these in vitro studies must be backed by future in vivo studies and clinical trials before therapeutic guidelines are issued regarding specific antivenom use in a clinical setting.


Assuntos
Anticorpos Neutralizantes/farmacologia , Antivenenos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Bothrops , Venenos de Crotalídeos/antagonistas & inibidores , Hemorragia/tratamento farmacológico , Mordeduras de Serpentes/tratamento farmacológico , Animais , Especificidade de Anticorpos , Bothrops/imunologia , Bothrops/metabolismo , Reações Cruzadas , Venenos de Crotalídeos/imunologia , Venenos de Crotalídeos/metabolismo , Hemorragia/sangue , Hemorragia/imunologia , Humanos , Mordeduras de Serpentes/sangue , Mordeduras de Serpentes/imunologia , Especificidade da Espécie
5.
EJNMMI Phys ; 4(1): 27, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29164483

RESUMO

BACKGROUND: The European directive on basic safety standards (Council directive 2013/59 Euratom) mandates dosimetry-based treatment planning for radiopharmaceutical therapies. The directive comes into operation February 2018, and the aim of a report produced by the Internal Dosimetry Task Force of the European Association of Nuclear Medicine is to address this aspect of the directive. A summary of the report is presented. RESULTS: A brief review of five of the most common therapy procedures is included in the current text, focused on the potential to perform patient-specific dosimetry. In the full report, 11 different therapeutic procedures are included, allowing additional considerations of effectiveness, references to specific literature on quantitative imaging and dosimetry, and existing evidence for absorbed dose-effect correlations for each treatment. Individualized treatment planning with tracer diagnostics and verification of the absorbed doses delivered following therapy is found to be scientifically feasible for almost all procedures investigated, using quantitative imaging and/or external monitoring. Translation of this directive into clinical practice will have significant implications for resource requirements. CONCLUSIONS: Molecular radiotherapy is undergoing a significant expansion, and the groundwork for dosimetry-based treatment planning is already in place. The mandated individualization is likely to improve the effectiveness of the treatments, although must be adequately resourced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...